Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 18 » апреля 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Химические реакторы
	(наименование)
Форма обучения:	очная
	(очная/очно-заочная/заочная)
Уровень высшего образования:	бакалавриат
	(бакалавриат/специалитет/магистратура)
Общая трудоёмкость:	144 (4)
	(часы (3Е))
Направление подготовки:	18.03.01 Химическая технология
	(код и наименование направления)
Направленность: Химиче	еская технология (общий профиль, СУОС)
	наименование образовательной программы)

1. Общие положения

1.1. Цели и задачи дисциплины

Цель дисциплины.

Формирование системы знаний, умений и навыков в области разработки, расчёта, использования и оптимизации химических реакторов.

В процессе изучения данной дисциплины студент осваивает следующую компетенцию:

 готовность применять аналитические и численные методы решения поставленных задач, использовать современные информационные технологии, проводить обработку информации с использованием прикладных программных средств сферы профессиональной деятельности, использовать сетевые компьютерные технологии и базы данных в своей профессиональной области, пакеты прикладных программ для расчета технологических параметров оборудования (ПКО-2).

Задачи дисциплины:

- изучение типов химических реакторов, особенностей их работы в различных условиях, а также, методов составления системы балансовых уравнений, описывающих химические, гидромеханические и тепловые процессы в реакторах;
- формирование умения проводить расчеты идеальных и реальных реакторов аналитическими, графическими, численными и приближенными методами;
- формирование навыков анализа работы химических реакторов с целью оптимизации технологических параметров.

1.2. Изучаемые объекты дисциплины

объекты:

- балансные, кинетические, вспомогательные уравнения и системы уравнений, описывающие, или моделирующие работу реакторов различного типа;
- тепловые режимы и тепловая устойчивость химических реакторов;
- приближенные и основанные на применении математического описания методы расчёта химических реакторов.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
-------------	----------------------	---	--	--------------------

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПКО-2	ИД-1пко-2	Знать: - типы реакторов и режимы их работы, включая реакторы для каталитических процессов; - виды балансных, кинетических и вспомогательных уравнений, используемых для описания работы химических реакторов; - знать цели, задачи и последовательность проектного и поверочного расчета химических реакторов;	Знает аналитические и численные методы решения поставленных задач; современные информационные технологии; сетевые компьютерные технологии ибазы данных в своей профессиональной области, пакеты прикладных программ для расчета технологических параметров оборудования.	Контрольная работа
ПКО-2	ИД-2пко-2	Уметь: - проводить сбор и анализ исходных данных, необходимых для математического моделирования химического реактора; - составлять и решать уравнения материального и теплового баланса при расчёте параметров работы и проектирования химических реакторов	Умеет применять аналитические и численные методы решения поставленных задач; использовать современные информационные технологии; проводить обработку информации с использованием прикладных программных средств и использовать сетевые компьютерные технологии и базы данных в своей профессиональной области, пакеты прикладных программ для расчета технологических параметров оборудования.	Зачет
ПКО-2	ИД-3пко-2	Владеть навыками расчета материального и теплового баланса процесса химического превращения и расчета реакторов, в том числе с использованием ЭВМ.	использования аналитических и численных методов решения	Творческое задание

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах	
Вид учесной рассты	часов	Номер семестра	
		6	
1. Проведение учебных занятий (включая проведе-	68	68	
ние текущего контроля успеваемости) в форме:			
1.1. Контактная аудиторная работа, из них:			
- лекции (Л)	32	32	
- лабораторные работы (ЛР)	34	34	
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)			
- контроль самостоятельной работы (КСР)	2	2	
- контрольная работа			
1.2. Самостоятельная работа студентов (СРС)	76	76	
2. Промежуточная аттестация			
Экзамен			
Дифференцированный зачет	9	9	
Зачет			
Курсовой проект (КП)			
Курсовая работа (КР)			
Общая трудоемкость дисциплины	144	144	

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
6-й семест	гр			
Иерархическая структура математической модели процесса в реакторе	6	4	0	10
Тема 1. Систематизация процессов в химическом реакторе по масштабу их протекания: химическая реакция, химический процесс в элементарном объеме, процессы в реакционном элементе и в реакторе в целом, их взаимосвязь и иерархическая структура математической модели процесса в реакторе. Примеры процессов в различных видах химических реакторов. Тема 2. Физико-химические закономерности химических превращений (стехиометрические, термодинамические, кинетические). Показатели химического превращения: степень превращения, выход продукта, интегральная и дифференциальная селективности, скорость реакции.				

Наименование разделов дисциплины с кратким содержанием		Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах
Гоморому ў готорогому ў мото путучкомуў	Л 12	ЛР 20	0	CPC 30
Гомогенный, гетерогенный, каталитический химический процесс	12	20	U	30
Тема 3. Химический процесс, как совокупность химического превращения и физических явлений переноса. Классификация химических процессов по различным признакам.				
Тема 4. Гомогенный химический процесс. Определение и примеры. Влияние химических признаков и условий протекания процесса на его показатели. Способы интенсификации. Понятие оптимальных температур для проведения обратимых и необратимых экзо- и эндотермических процессов.				
Тема 5. Гетерогенный (некаталитический) химический процесс Определение и примеры. Структура процесса и его составляющие (стадии). Наблюдаемая скорость химического превращения. Области (режимы) протекания процесса, лимитирующая стадия. Обоснование, построение и анализ математической модели для реакций горения (модель «сжимающаяся сфера») и топохимической (модель «с невзаимодействующим ядром»). Наблюдаемая скорость превращения, время превращения и пути интенсификации для различных областей протекания процесса.				
Тема 6. Каталитический процесс. Определение, классификация, примеры. Гетерогенный катализ на твердом катализаторе. Обоснование, построение и анализ математической модели на каталитической поверхности и в пористом зерне катализатора. Наблюдаемая скорость превращения и области протекания процесса. Степень использования внутренней поверхности. Пути интенсификации каталитических процессов.				
Химический реактор. Основные положения и определения	10	8	0	34
Тема 7. Классификация процессов в реакторах по различным признакам: вид химического процесса, организация потоков реагентов (схема движения регентов через реактор, структура потоков в реакционной зоне), организация тепловых потоков (тепловой режим, схема теплообмена), стационарность процесса. Обоснование и построение математических моделей процесса в реакторах различного типа как системы уравнений материального и теплового балансов на основе данных о структуре потока, химических превращениях, явлениях переноса тепла и				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	ПЗ	CPC
вещества и их взаимодействия. Систематизация и классификация математических описаний процессов в реакторах.				
Тема 8. Влияние структуры потока (идеальное смешение и вытеснение), стационарности режима (проточный и периодический), параметров и условий протекания процесса (температура, концентрация, давление, объем реакционной зоны, время), вида химической реакции (простая и сложная, обратимая и необратимая), а также ее параметров на профили концентраций и показатели процесса в реакторе (степень превращения, выход продукта, селективность процесса). Основы расчета процессов в реакторе. Тема 9. Сравнение эффективности работы				
реакторов, описываемых различными моделями: идеального смешения и вытеснения. Процессы в неидеальных реакторах, модели процессов их сопоставление с моделями идеальных процессов.				
Тема 10. Неизотермические процессы в химических реакторах. Организация тепловых потоков и режимов в химических реакторах. Распределение температуры и концентраций (степени превращения) в реакторах идеального смешения и вытеснения, работающих в адиабатическом и политермическом режимах. Связь температуры и степени превращения в адиабатическом процессе, сопоставление с изотермическим режимом.				
Промышленные химические реакторы	4	2	0	2
Тема 11. Конструкции промышленных реакторов для проведения процессов: гомогенных, гетерогенных и каталитических. Выбор типа реактора, особенности конструкции и режимы их работы.				
ИТОГО по 6-му семестру	32	34	0	76
ИТОГО по дисциплине	32	34	0	76

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Уточнение механизма (химизма) процесса и определение количества ключевых
	компонентов

№ п.п.	Наименование темы лабораторной работы
2	Определение материального баланса при уточненном механизме процесса и заданных степенях превращения по ключевым компонентам и составу реакционной исходной смеси
3	Совместне решение материального и теплового баланса реактора и определение времени пребывания в нем при заданных степенях превращения по ключевым компонентам и составу реакционной исходной смеси
4	Работа РИВ и РИС в изотермическом режиме. Сравнение эффективности работы этих реакторов
5	Проектный расчет каскада РИС, работающих в изотермическом и адиабатическиом режимах
6	Поверочный расчет РИВ, работающего в неизотермическом режиме и оптимизация его работы

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Лабораторные работы проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При их проведении преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство,	Количество экземпляров в			
J12 11/11	год издания, количество страниц)				
	1. Основная литература				
1	Смирнов Н.Н. Химические реакторы в примерах и задачах : учебное пособие для вузов / Н.Н. Смирнов, А.И. Волжинский Ленинград: Химия, 1986.	62			
	2. Дополнительная литература				
	2.1. Учебные и научные издания				
1	Закгейм А. Ю. Общая химическая технология: введение в моделирование химико-технологических процессов: учебное пособие для вузов / А. Ю. Закгейм Москва: Логос, 2017.	16			
2	Кутепов А. М. Общая химическая технология: учебник для вузов / А. М. Кутепов, Т. И. Бондарева, М. Г. Беренгартен М.: Академкнига, 2007.	50			
3	Хлуденев А. Г. Химические реакторы : учебное пособие / А. Г. Хлуденев Пермь: Изд-во ПНИПУ, 2019.	20			
	2.2. Периодические издания				
	Не используется				
	2.3. Нормативно-технические издания				
	Не используется				
	3. Методические указания для студентов по освоению дисципли	ІНЫ			
1	Поникаров И. И. Расчеты машин и аппаратов химических производств и нефтегазопереработки: (примеры и задачи): учебное пособие для вузов / И.И. Поникаров, С.И. Поникаров, С.В. Рачковский Санкт-Петербург [и др.]: Лань, 2017.	3			
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента			
1	Левеншпиль О. Инженерное оформление химических процессов : пер. с англ. / О. Левеншпиль Москва: Химия, 1969.	2			
2	Рейхсфельд В. О. Оборудование производств основного органического синтеза и синтетических каучуков: учебное пособие для вузов / В. О. Рейхсфельд, Л. Н. Еркова Ленинград: Химия, 1974.	2			

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
ľ '			локальная сеть; авторизованный доступ
литература	Корытцева А. К. Химические реакторы. Введение в теорию и практику: учебное пособие / Корытцева А. К., Петьков В. И Санкт-Петербург: Лань, 2019.	1.1.2.2.2	локальная сеть; авторизованный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
	Microsoft Office Professional 2007. лиц. 42661567
Прикладное программное обеспечение общего назначения	MATHCAD 14 Academic, ПНИПУ 2009 г.

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/
Информационно-справочная система нормативно- технической документации "Техэксперт: нормы, правила, стандарты и законодательства России"	https://техэксперт.caйт/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
1 1	Компьютерный класс с установленным MS Excel, MS Word и MathCad	10
	Мультимедийная аудитория с проектором, ноутбуком и экраном	1

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

Факультет химических технологий, промышленной экологии и биотехнологии

(наименование факультета) Химические технологии

(наименование кафедры, ведущей дисциплину)

Приложение к рабочей программе дисциплины

Химические реакторы

(наименование дисциплины по учебному плану)

Направление подготовки:					
18.03.01 - «Химическая технология»					
(код	и наименование)				
Направленность образовательной программы:	«Химическая технология полимерных				
	материалов и энергетических				
	конденсированных систем»				
	(наименование профиля/специализации)				
Уровень высшего образования:	бакалавриат				
	(бакалавриат / магистратура / специалитет)				
Форма обучения:	заочная				
	(очно-заочная / заочная)				

Данное приложение является неотъемлемой частью рабочей программы дисциплины (РПД) «**Химические реакторы»** и включает дополнения новых пунктов, связанные со спецификой заочной формы обучения, остальные пункты и таблицы РПД очной формы обучения применяются без изменений.

Таблица 3.1 – Объём и виды учебной работы

NG.			Трудоёмкость, ч		
№ п.п.	Виды учебной работы	всего	Номер семестра 8		
1	2	3	4		
1	Аудиторная (контактная работа)				
	- лекции (Л)	6	6		
	- лабораторные работы (ЛР)	0	0		
	- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	6	6		
	- контроль самостоятельной работы (КСР)	2	2		
2	Самостоятельная работа студентов (СРС)	126	126		
	- изучение теоретического материала	37	37		
	- подготовка к практическим занятиям и лабораторным работам	34	34		
	- подготовка отчетов по лабораторным работам	10	10		
	- подготовка отчетов по практическим занятиям	11	11		
	- выполнение контрольной работы	34	34		
3	Итоговый контроль (промежуточная аттестация обучающихся) по дисциплине: зачёт /экзамен	4	4		
4	Трудоёмкость дисциплины, всего: в часах (ч) в зачётных единицах (ЗЕ)	144 4	144 4		

4.1. Контрольная работа (домашняя)

Задание №1

Определение химизма процесса, состоящего только из линейнонезависимых реакций

На основании предполагаемого механизма (химизма) процесса, описываемого направлениями процессов по варианту задания, необходимо:

- на основании направления процессов и наличия промежуточных продуктов составить уравнения химических реакций (определить коэффициенты уравнений реакций на одну моль первого, ключевого, компонента реакции);
- > определить количество ключевых компонентов;
- уточнить механизм (химизм) процесса, состоящего только из линейно-независимых реакций.

Выполнение работы следует произвести тремя способами:

- с использованием количества веществ в механизме процесса и количества базисных компонентов;
- с расчетом ранга матрицы стехиометрических коэффициентов (расчеты на MathCad);
- > с расчетом определителя Грама матрицы, сформированной из матрицы стехиометрических коэффициентов.

По окончанию работы необходимо сделать выводы об уточненном механизме (химизме) процесса и количеству ключевых компонентов, а также составлен отчет с описанием, обоснованием и иллюстрацией выполняемых операций.

Номер варианта	Предполагаемый механизм (химизм) процесса
	$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$
	$C_2H_6 + O_2 \rightarrow CH_4 + CO + H_2$
1	$C_2H_6 + O_2 \rightarrow CH_4 + CO_2 + H_2O$
1	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
	$C_3H_8 + O_2 \rightarrow CH_4 + CO + H_2$
2	$C_3H_8 + O_2 \rightarrow CH_4 + CO_2 + H_2O$
<u> </u>	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
3	$C_4H_{10} + O_2 \rightarrow CH_4 + CO + H_2$
	$C_4H_{10} + O_2 \rightarrow CH_4 + CO_2 + H_2O$

Номер варианта	Предполагаемый механизм (химизм) процесса
	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$
	$C_5H_{12} + O_2 \rightarrow CH_4 + CO + H_2$
4	$C_5H_{12} + O_2 \rightarrow CH_4 + CO_2 + H_2O$
4	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$
	$C_2H_6 + O_2 \rightarrow CO + H2$
5	$C_2H_6 + O_2 \rightarrow CH_4 + CO + H_2$
5	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
	$C_3H_8 + O_2 \rightarrow CO + H2$
	$C_3H_8 + O_2 \rightarrow CH_4 + CO + H_2$
6	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
	$C_4H_{10} + O_2 \rightarrow CO + H2$
_	$C_4H_{10} + O_2 \rightarrow CH_4 + CO + H_2$
7	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$
	$C_5H_{12} + O_2 \rightarrow CO + H_2$
o	$C_5H_{12} + O_2 \rightarrow CH_4 + CO + H_2$
8	$CH_4 + O_2 \rightarrow CO + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_2H_2 + O_2 \rightarrow CO_2 + H_2O$
	$C_2H_2 + O_2 \rightarrow CO + H_2$
0	$C_2H_2 + O_2 \rightarrow CO + H_2O$
9	$C_2H_2 + O_2 \rightarrow CO_2 + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
	$C_2H_4 + O_2 \rightarrow CO_2 + H_2O$
	$C_2H_4 + O_2 \rightarrow CO + H_2$
10	$C_2H_4 + O_2 \rightarrow CO + H_2O$
10	$C_2H_4 + O_2 \rightarrow CO_2 + H_2$
	$CO + O_2 \rightarrow CO_2$
	$H_2 + O_2 \rightarrow H_2O$
I .	

Задание №2

расчет и анализ результатов расчета материального баланса при различных степенях превращения по ключевым компонентам

<u>Цель работы:</u> Проведение расчета и анализа результатов расчета материального баланса при заданных степенях превращения по ключевым компонентам и механизму процесса, определенному при выполнении Задания №1

Описание задания:

Для подаваемой в процесс 1000нм³/час смеси, содержащей 98%об. углеводорода и 2%об. N₂, рассчитать материальный баланс процесса горения углеводородов по уточненному механизму (химизму) процесса, определенного вариантом по Заданию №1. Все расчеты проводить в Excel.

В ходе выполнения работы:

- рассчитать состав и степень изменения объема (объемного расхода продуктов процесса) *для разных степеней превращения углеводорода* (не менее 5 точек в пределах от 0 до 1, например: 0.0, 0.2, 0,4, 0,6, 0,8 и 1,0);
- > произвести проверку произведенных расчетов по массе;
- ▶ при выполнении расчетов необходимо учитывать, что промежуточные продукты (СН₄, СО и Н₂) догорают полностью, т.е. степени превращения по данным компонентам равны 1;
- \triangleright считать, что воздух содержит 21%об.О₂ и 79%об.N₂.

Результаты расчетов свести в отчет, проиллюстрировать графиками и сделать выводы.

Номер	Величина коэффициента избытка воздуха (α)						
варианта	п/г 1	п/г 4	п/г 5				
1	1,10	1,60	2,10	2,60	1,55		
2	1,15	1,65	2,15	2,65	2,00		
3	1,20	1,70	2,20	2,70	2,45		
4	1,25	1,75	2,25	2,75	2,90		
5	1,30	1,80	2,30	2,80	2,35		
6	1,35	1,85	2,35	2,85	1,80		

7	1,40	1,90	2,40	2,90	1,25
8	1,45	1,95	2,45	2,95	1,70
9	1,50	2,00	2,50	3,00	2,15
10	1,55	2,05	2,55	3,05	2,60

Задание №3

расчет и анализ результатов расчета теплового баланса при различных степенях превращения по ключевым компонентам

Описание задания:

На основании результатов расчета материального баланса горения углеводородов (Задание №2) составить тепловой баланс адиабатного процесса горения, и рассчитать параметры потока, связанные с повышением его температуры. Все расчеты проводить в Excel.

В ходе выполнения работы:

- > рассчитать тепловые эффекты химических реакций;
- ▶ определить температуру дымовых газов при проведении процесса до CO₂ и H₂O с учетом 3% потерь теплоты;
- \triangleright считать, что температура исходной смеси (углеводород + азот) и температура воздуха равны 25 $^{\circ}$ C;
- при расчете теплоты дымовых газов использовать теплоемкости газов при высоких температурах
- ▶ определить коэффициент объемного температурного расширения и реальный расход дымовых газов (м³/час) при рассчитанной температуре дымовых газов и при давлениях 1 атм, 5 атм и 10 атм.
- ▶ построить графики зависимостей: концентраций веществ, температуры реакционной смеси и расходов (нм³/ч и м³/ч при заданном давлении и рассчитанной температуры потока) от степени превращения углеводородов
- ▶ рассчитать время пребывания в реакторе объемом 1,5 м³ при разных степенях превращения углеводородов и связать данное время с различными условиями проведения процесса, т.е. при разном давлении и степени превращения углеводородов, построить графики и сделать выводы о зависимости времени пребывания от параметров процесса.

Результаты расчетов свести в таблицу, построить графики, сделать выводы.

Расчеты производить в том же файле Excel, где производился расчет материального баланса, но на отдельном листе. При этом, необходимые для расчета теплового баланса данные должны браться с листа с расчетами материального баланса посредством присвоения ячеек, т.е. листы расчета материального баланса и теплового баланса в Excel должны быть связаны.

Мольная изобарная теплоемкость газов и энтальпия их образования $C_P = a + bT + cT^2 + dT^3 \,, \, \text{кал/(моль·К)}$

Газ	а	b	С	d	ΔH ₂₉₈ , ккал/моль
CH_4	4,598	1,245E-2	2,860E-6	-2,703E-9	-17,895
C_2H_6	1,292	4,254E-2	-1,657E-5	2,081E-9	-20,236
C_3H_8	-1,009	7,315E-2	-3,789E-5	7,678E-9	-24,820
C_4H_{10}	2,266	7,913E-2	-2,647E-5	-0,674E-9	-30,120
C_5H_{12}	-0,866	1,164E-1	-6,163E-5	1,267E-8	-35,000
CO	7,373	-0,307E-2	6,662E-6	-3,037E-9	-26,416
N_2	7,440	-0,324E-2	6,400E-6	-2,790E-9	-
H_2	6,483	2,215E-3	-3,298E-6	1,826E-9	-
CO_2	4,728	1,754E-2	-1,338E-5	4,097E-9	-94,050
H_2O	7,701	4,595E-4	2,521E-6	-0,859E-9	-57,796
O_2	6,713	-0,879E-6	4,170E-6	-2,544E-9	-
C_2H_4	0,909	3,740E-2	-1,994E-5	4,192E-9	12,496
C_2H_2	6,406	1,810E-2	-1,196E-5	3,373E-9	54,194

Мольная изобарная теплоемкость газов при высоких температурах, $Дж/(моль \cdot K)$

Газ	T max, K	Уравнение зависимости $C_P = f(T)$
H ₂ O	2500	$30,02+10,72\cdot10^{-3}\cdot T+0,33\cdot10^{5}/T^{2}$
CO_2	2500	$44,17+9,04\cdot10^{-3}\cdot T-8,54\cdot10^{5}/T^{2}$
O_2	3000	$29,98+4,187\cdot10^{-3}\cdot T-1,675\cdot10^{5}/T^{2}$
N_2	2500	27,88+4,27·10 ⁻³ ·T

Указания по подготовке контрольной работе.

Для подготовки контрольной работы преподаватель на первом занятия выдает студенту задание из представленного перечня.

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

Факультет химических технологий, промышленной экологии и биотехнологии
Кафедра «Химические технологии»

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ «Химические реакторы»

основной профессиональной образовательной программы высшего образования – программы подготовки бакалавров

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине

Приложение к рабочей программе дисциплины

Направление подготовки: 18.03.01 Химическая технология

Профиль программы бакалавров: Химическая технология

неорганических веществ

Химическая технология природных энергоносителей и углеродных

материалов

Химическая технология переработки

древесины

Химическая технология полимерных

материалов и энергетических конденсированных систем

Квалификация выпускника: бакалавр

Выпускающая кафедра: Химические технологии

Форма обучения: очная, заочная

Курс: 4 Семестр: 8

Трудоёмкость:

Кредитов по рабочему учебному плану: <u>4</u> 3E Часов по рабочему учебному плану: <u>144 ч.</u>

Виды промежуточного контроля:

Дифф.зачет: 8 семестр

Пермь - 2023 г.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся является частью (приложением) к рабочей программе дисциплины **«Химические реакторы»** и разработан на основании:

- положения проведении текущего контроля успеваемости аттестации обучающихся образовательным промежуточной ПО высшего образования – программам бакалавриата, программам специалитета и магистратуры в ПНИПУ, утвержденного «29» апреля 2014 г.;
- приказа ПНИПУ от 03.12.2015 № 3363-В «О введении структуры Φ OC»;
- рабочей программы дисциплины «Химические реакторы».

1. Перечень формируемых частей компетенций, этапы их формирования и контролируемые результаты обучения

1.1. Формируемые части компетенций

Согласно КМВ ОПОП учебная дисциплина «Химические реакторы» относится к базовой части Блока 1 (Б1) Дисциплины (модули) и является обязательной при освоении ОПОП по направлению 18.03.01 «Химическая технология», профилям «Химическая технология неорганических веществ», «Химическая технология переработки древесины»

В рамках учебного плана образовательной программы в 6-м семестре на этапе освоения данной учебной дисциплины формируются следующие дисциплинарные части компетенции ПК-2: готовность применять аналитические и численные методы решения поставленных задач, пакеты прикладных программ для расчёта технологических параметров химических реакторов

1.2. Этапы формирования дисциплинарных частей компетенций, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (6-го семестра базового учебного плана) и разбито на 2 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные и практичекие занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты дисциплинарных компетенций знать, уметь, владеть, указанные РПД, которые выступают И контролируемых результатов обучения (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по практическим работам и зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по лисциплине

Контролируемые результаты обучения по дисциплине		Вид контроля				
		Текущий		жный	Промежуточный	
(ЗУВы)	ТО	ТВ	ПЗ	КЗ	Дифф.за чёт	
Усвоенн	ные знания					
3.1-типы реакторов и режимы их работы, включая	TO-1	TB1			TB	
реакторы с катализатором;						
- виды балансных, кинетических и вспомогательных						
уравнений, используемых для описания работы						
химических реакторов;						
3.2 - способы расчёта каскадов реакторов;	TO-2	TB2			TB	
Освоенн	ые умения					
У.1 - проводить математический анализ	TO-1			К3-1	П3	
экспериментальных данных с целью определения						
параметров для математического моделирования						
химического реактора;						
- составлять и решать системы уравнений для разработки	4					
математической модели химических реакторов;						
У.2 - разрабатывать программную модель химического	TO-2				П3	
реактора;						
-проводить исследования на модели химического						
реактора с целью оптимизации процесса;						
Приобретен	ные владен	ш Вин				
В.1 - методами практического исследования	TO-1				ПЗ	
промышленных химических реакторов;						
-						
В.2 - навыками использования программног	ro TO-2			КЗ-1	ПЗ	
обеспечения ПК для анализа экспериментальных данны						
и оптимизации работы реакторов;						

C — собеседование по теме; TO — коллоквиум (теоретический опрос); K3 — кейс-задача (индивидуальное задание); $O\Pi P$ — отчет по лабораторной работе; T/KP — рубежное тестирование (контрольная работа); TB — теоретический вопрос; TA — практическое задание; TA — комплексное задание дифф. зачета.

Итоговой оценкой освоения дисциплинарных компетенций (результатов обучения по дисциплине) является промежуточная аттестация в виде «дифференцированного зачёта», проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

2.1. Текущий контроль

Текущий контроль для оценивания знаний по дисциплинарным частям компетенций (табл. 1.1) в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений дисциплинарных частей компетенций (табл. 1.1) проводится согласно графика учебного процесса, приведенного в РПД, в форме защиты результатов выполнения кейс-задачи.

2.2.1. Защита лабораторных работ

Лабораторные работы не предусмотрены

2.2.2. Рубежная контрольная работа

Рубежные контрольные работы не предусмотрены

2.3. Промежуточная аттестация

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешно освоение тем практических заданий.

Промежуточная аттестация, согласно РПД, проводится в виде дифференцированного зачёта по дисциплине в виде двух устных вопросов и практического задания, выполняемого на базе освоенных тем практических заданий. Вопросы при зачёте содержат теоретические темы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и для контроля уровня приобретенных владений заявленных дисциплинарных компетенций.

Вопросы при зачёте формируются таким образом, чтобы они охватили теоретические и практические темы, контролирующие все заявленные дисциплинарные компетенции. Примеры вопросов для зачёта представлены ниже.

1.3.1. Типовые вопросы и задания для дифференцированного зачёта по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Скорость стадии химической реакции. Выражение скорости химических реакций компонентов через скорость стадии
- 2. Ключевые компоненты химической реакции. Матрица стехиометрических коэффициентов. Определение числа ключевых компонентов.
- 3. Сложные системы кинетических уравнений. Размерность константы скорости. Радикально-цепные реакции

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Понятие интегральной функции времени пребывания частиц в объёме реактора. Понятие дифференциальной функции времени пребывания частиц в объёме реактора
- 2. Метод крупных частиц при расчёте реакторов. Распределение микрообъёмов реакционной смеси по времени пребывания в объёме реактора. Интегральный эффект протекания химической реакции в микрообъёмах

3. Тепловая устойчивость химических реакторов. Аналитическое и графическое представление

Типовые практические задания для контроля приобретенных владений:

- 1. Теория однородно-пористого катализатора. Анализ уравнения Зельдовича-Тиле
- 2. Решение системы кинетических уравнений химического реактора с использованием операционного исчисления.
- 3. Расчёт химического реактора по данным трассировки

Полный перечень теоретических вопросов и практических заданий в форме комплекта вопросов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на дифференцированном зачёте

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных дисциплинарных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время зачёта.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС магистерской программы.

3. Критерии оценивания уровня сформированности компонентов и дисциплинарных компетенций

3.1. Оценка уровня сформированности компонентов дисциплинарных компетенций

При оценке уровня сформированности дисциплинарных компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете дисциплинарной компетенции обобщается на соответствующий компонент всех дисциплинарных компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов дисциплинарных компетенций приведены в общей части ФОС программы бакалавриата.

3.2. Оценка уровня сформированности дисциплинарных компетенций

Общая оценка уровня сформированности всех дисциплинарных компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены

в общей части ФОС программы бакалавриата.

При формировании итоговой оценки промежуточной аттестации в виде дифференцированного зачёта используются типовые критерии, приведенные в общей части ФОС программы бакалавриата.

Критерии оценки ситуационных заданий

Оценка «пять «ставится, если обучающийся осознанно излагает и оценивает суть данной ситуации, с аргументацией своей точки зрения, умеет анализировать, обобщать и предлагает верные пути решения задачи. Получает правильный результат.

Оценка «четыре» ставится, если обучающийся понимает суть ситуации, логично строит свой ответ, но допускает незначительные неточности при определении путей решения задачи. Получает правильный результат.

Оценка «три « ставится, если обучающийся ориентируется в сущности складывающейся проблемы, но нуждается в наводящих вопросах, не умеет анализировать и не совсем верно намечает пути решения ситуации. Не может получить правильный ответ без дополнительной консультации.

Оценка «два» ставится, если обучающийся не ориентируется и не понимает суть данной ситуации, не может предложить путей ее решения, либо допускает грубые ошибки. Не может решить поставленную задачу за установленный срок.